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The method of reconstruction of magnetization distribution in the crystal with noncollinear ordering of magnetic moments in 
the cubic, tetragonal and orthorhombic crystal structures was described. As an example the neutron diffraction data for 
ScFe4Al8 were used. It has been shown that in this case noncollinear magnetic system can be conveniently described as 
composed of three collinear systems. From the analysis of the magnetic structure factors the components of the magnetic 
moment of each atom in the system can be estimated what further allows for the synthesis of “partial” structure factors. The 
“partial” structure factors were used as the input data for the reconstruction of “partial” magnetization distributions using the 
Maximum Entropy Method (MEM). Finally, the full vectorial map of the magnetization distribution was obtained as a linear 
combination of the “partial” distributions.  
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1. Introduction 
 
The noncollinear magnetism is observed in many 

systems. Such behaviour can arise from a competition 
between FM and AFM interactions, geometric frustration 
of AFM interactions or anisotropy caused by the preferred 
direction of magnetization. Although the magnetization 
density is not an observable [1,2] and thus cannot be 
directly observed, it plays a fundamental role in the 
interpretation of magnetic scattering of neutrons.  
Moreover, the magnetization, especially of the 3d electron 
systems, is built by the outer electrons, thus it can give a 
very precise insight into the distribution of the outer 
electrons in the unit cell. 

Complex magnetic systems are often studied by 
means of the polarized neutron diffraction with strong 
external magnetic field. In this technique the only one 
parameter – the flipping ratio R – is measured, and thus the 
determination of the vectorial map of the internal 
magnetization distribution is not easy.  In addition, an 
external magnetic field destroys the ‘natural’ ordering of 
magnetic moments, so the fine features of the magnetic 
ordering like the question on noncollinearity or 
incommensurability, may have not unique interpretation. 
This was somehow warned in the paper [2] in which one 
reads: “It may be true that studies on systems which are 
not fruitfully analyzed within the conventional collinear 
scheme are avoided, or not published.” [2]. 

In this article we propose relatively simple method of 
the reconstruction of magnetization density distribution in 
noncollinear magnetic system. The method presented is 
restricted for the cubic, tetragonal and orthorhombic 
crystal structures. The only information desired are the 
unpolarized neutron diffraction data, collected without an 
external magnetic field. It will be shown that after the 
conventional magnetic structure refinement the reduction 
of the noncollinear system to the proper number of the 

collinear magnetic systems can be performed and then, for 
each of these resulting “collinear systems”, the distribution 
of the proper component of magnetization density can be 
reconstructed by the Maximum Entropy Method. Finally - 
as an example - we will present the reconstruction of the 
magnetization density distribution for the noncollinear and 
incommensurate ScFe4Al8 compound. 

 

 

2. The method 
 

Our goal consists in reconstruction of the spatial 

distribution of magnetization in a crystal using the 

magnetic neutron diffraction data. In the neutron 

diffraction experiments the Fourier transform of the 

magnetization is observed. The intensity of magnetically 

scattered neutrons is proportional to the square of the 

moduli of magnetic structure factor, which is vectorial [3]: 
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and the sum is restricted to the magnetic atoms. 

The Halpern’s vector can be written as: 
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where (x, y, z) denotes coordinates connected with the 

crystal,  Halpern’s vector can be written in the form: 
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where ,  and  are the angles between the unique vector 

e


 and X, Y and Z axes, respectively. Thus, we can write 

the Halpern’s vector in the form: 
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The unit vector  e


 can be written in the form:  
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Let’s define a new, not orthogonal in general case, set of 

basic vectors: 
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The Halpern’s vector can be written in the basis (3) is: 
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Now, using (4), the magnetic structure factor (1) can be 

written in the form: 
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Thus we can write the structure factor as the sum of 

three components – the “partial” structure factors, each of 

them dependent on different components of the atomic 

magnetic moment: 
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When continuous  rM


 - the magnetization distribution 

throughout the unit cell is considered, the magnetic 

structure factor can be written in the form: 
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The unit vector of local magnetization is: 
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Thus again: 
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When every jx, , jy,  and jz,  can be unambiguously 

found during the refinement of the neutron diffraction 

data, the set of desired number of “partial” structure 

factors can be calculated.  

Because  rM x


,  rM y


 and  rM z


 defined by (7) 

are scalar functions of vectorial argument, one can try to 

reconstruct them by Maximum Entropy Method and obtain 

finally the full vectorial map of magnetization: 
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MEM seems to be promising because the results are 

independent from the model and the required distribution 

can be obtained from incomplete data set. 

 

 

3. Maximum Entropy Method 
 

In the present work we used the program MEED [4] 

modified for magnetization density reconstruction. 

Because the map reconstructed by MEM has to be 

positive, the original procedure [4] had to be modified in 
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order to deal with positive/negative magnetization 

directions. The modified procedure was similar to this one 

described by Papoular [5].  

The maximum entropy was introduced in 

crystallography by Collins [6]. Using the Jaynes [7] 

entropy formula:  
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where pi is the probability distribution in the i-th pixel of  

the unit cell divided into P grid points and τi  is so-called 

prior distribution. Assuming the positive distribution 
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, the proper probability distributions can be 

expressed in the forms:  
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The subscript zero refers to the prior density. 

Once the misfit function of the form (9) is introduced 
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where N denotes the number of observed structure factors 

 KF


, the functional: 
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where λ is the undetermined Lagrange multiplier can be 

maximized, so to obtain maximum entropy of the 

distribution which would agree with the experimental data 

within chosen cut-of value of C.  This results in a set of 

equations: 
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 whose final solution has the form: 
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The equations (12) are strongly nonlinear and has to 

be solved iteratively [4]. Starting with the assumed prior 

distribution  rM


0  the new distribution  rM


 is obtained 

and this is used as the prior distribution in the next 

iteration. Assuming the Gaussian distribution of the 

experimental uncertainties  obs
kF  the procedure is 

terminated by us when  C = 1 is reached [4].  

 Let’s consider a collinear magnetic system in 

which the magnetic moments are either parallel or 

antiparallel to a given direction. Let  rM
  and 

 rM
 denote the magnetization parallel (positive) and 

antiparallel (negative) to the chosen direction. The signs 

+/- are chosen arbitrarily. For each positive/negative part 

of the magnetization directions the MEM procedure can be 

applied in a simple manner. It is obvious that in general 

case we need calculate the six sets of “partial” structure 

factors for 
x , 

x , 
y , 

y , 
z , and 

z  respectively. In 

case of collinear systems both the negative and positive 

part of the magnetization distribution can be treated in a 

separate manner and the final distribution can be found as 

the difference of the M  and M
 
partial distributions.

  

The procedure is relatively simple if one knows the 

magnetization of the sample, i.e. also the structure factor 

for (0,0,0) reflection. However, in the case of 

aniferromagnets, and noncollinear systems the situation 

may be by far more complicated. 

  
 

4. The example 
 

As an illustration of the method we used the 

experimental data collected on ScFe4Al8 system [8].  

The sample crystallizes in a tetragonal ThMn12 type 

structure, see Fig. 1.  

 

 
 

Fig. 1 The magnetic moment arrangement in the one of 

225 chemical unit cells building the single magnetic 

supercell according to (0.13, 0.13, 0) modulation or one 

of 2500 chemical unit cells building the single magnetic 

supercell  according  to   (0.18, 0.18, 0)  modulation  [8].  

 

 

In general, the iron atoms occupy (8f) positions of the 

space of I 4/mmm symmetry. The studies of MFe4Al8 

compounds have shown that the magnetic properties of 

this family of alloys are sensitive to changes in iron 
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concentration as well as to the disorder in the lattice [9]. 

The excess of Sc atoms substitute Fe and have a 

pronounced effect on the magnetic properties. The value 

of Fe magnetic moment is close to 1.0 μB per atom at 4 K.  

The experiments [9] carried out on ScFe4Al8 in 

temperature range 4 – 320 K have shown that below 120 K 

the magnetic structure of the alloy forms a double cycloid 

with magnetic moments rotating according to the 

incomensurate in-plane wave vector, which is temperature 

independent up to 160 K.  The double cycloid structure 

formed by the iron magnetic moments exhibits the phase 

shift equal to 150(7) degree at 4 K. The shift decreases 

with temperature increase and at 120 K achieves limiting 

value.   

This double cycloid system discloses the dominant 

antiferromagnetic character of Fe–Fe coupling in the basal 

plane of the tetragonal cell. The canting angle α = 27(3)
0
 at 

4 K exists below 120 K [8]. The n = 12 of magnetic 

structure factors for the modulation vector 

 0,13.0,13.0q


 [9] was found during the magnetic 

structure refinement in the region of 30.0
sin

07.0 



. 

The positions of the iron atoms together with the 

components of their magnetic moments in the unit cell are 

stored in Table 1.  

 
Table 1. The positions of iron atoms in the starting “0”  

unit cell of  ScFe4Al8. Mx  and My are the x and y 

components of each magnetic moment. 

 
Atom x y z Mx My 

Fe1 0.250 0.250 0.250 +0.96  +0.28 

Fe2 0.750 0.250 0.250  -0.85 +0.53  

Fe3 0.750 0.750 0.250 +0.44 +0.90 

Fe4 0.250 0.750 0.250  -0.85 +0.53  

Fe5 0.250 0.250 0.750 +0.96  +0.28 

Fe6 0.750 0.250 0.750  -0.85 +0.53  

Fe7 0.750 0.750 0.750 +0.44 +0.90 

Fe8 0.250 0.750 0.750  -0.85 +0.53  

 

 

Because in ScFe4Al8 system the z component of each 

individual magnetic moment is always equal to zero, the 

 KSz


 “partial” structure factors are equal to zero too (see 

eq. 7). As in the system  the 
x , 

x and 
y  components 

are present only (see Table 1) the three sets - each of them 

containing a number of 50 of “partial” magnetic structure 

factors given by eqs. (5) have been calculated using the 

data stored in Table 1.  In order to be close to the 

experimental conditions the real and imaginary parts of 

this “partial” magnetic structure factors were calculated in 

the region of 30.0
sin





.  

In all three cases the MEM reconstructions of 

magnetization density distribution were performed in the 

64x64x64 grid points, assuming the P1 symmetry. Instead 

of the unknown statistical uncertainty  obs
kF  required by 

MEM [4] the values defined by eq.  (13) were used: 
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where θ is the angular position of a given Bragg peak. In 

each step of iteration the magnetization distribution was 

normalized and the normalization factors 
xP , 

xP  and 

yP  were found from the formulas:   
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The convergence of the procedure was measured by 

the R-factor value [4]: 
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The calculations were stopped when factor R was 

equal to 0.01. The presence of the modulation vectors in 

the system does not create any additional troubles from the 

point of view of the MEM procedure. 

The convergence of the MEM procedure was reached 

in about 50 iterations for all of components of magnetic 

moments. As the results of MEM applied to those three set 

of “partial” structure factors we obtain also three of 

 rM x

 ,  rM x

  and  rM y

  and magnetization 

distributions corresponding to x and y components of 

magnetic moments and for positive and negative directions 

of magnetization. Then, the final magnetization density 

distribution was calculated using eq. (9), where: 
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 The MEM applied to this calculated set of the 

structure factors leads to the results shown in Fig. 2. The 

vectors show the direction of the local magnetization and 

their lengths are proportional to the value of local 

magnetization.  Due to the very wide dynamic range of the 

local magnetization vector, the lengths of this vector are 

given in logarithmic scale.  

The number of 10 contours are drawn in linear scale 

in the regions up to 0.002 μB/Å
3 

for            z = 0.0, up to 

0.005 μB/Å
3
 for z = 0.5 and and up to 1.45 μB/Å

3
 for z = 

0.25 and z = 0.75. The noncollinearity of the 

magnetization vectors is clearly seen. The details of the 

magnetization distribution in ScFe4Al8 will be discussed 

elsewhere. 
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Fig.2 The magnetization density distribution in XY plane for different z coordinates. The every second point in 

each direction was shown for better readability. The length of the magnetization vectors are given in a logarithmic 

scale. The number of 10 contours are drawn in linear scale in the regions from 0.0 μB/Å3 to 2.0*10-3 μB/Å3 for                   

z = 0.0, from 0.0 μB/Å3 to 5.0*10-3 μB/Å3 for z = 0.5 and  from  0.0 μB/Å3  to  1.45 μB/Å3  for  z = 0.25  and  z = 0.75.  

 

 

5. Conclusions 
 

It has been shown that the magnetic structure factors 

can be expressed as the combination of the “partial” 

magnetic structure factors. Each partial structure factor 

depends on different component of magnetic moments of 

the atom in the system. From the other hand, the same set 

of these “partial” magnetic structure factors can be 

expressed as the functions of the internal magnetization 

distribution. Once the set of these “partial” structure 

factors was obtained, the Maximum Entropy Method can 

be easily applied and the distribution of the magnetization 

in the noncollinear magnetic system can be fully 

reconstructed  
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